In vivo behavior of a Helicobacter pylori SS1 nixA mutant with reduced urease activity.
نویسندگان
چکیده
Helicobacter pylori mutants devoid of urease activity fail to colonize the gastric mucosa of mice; however, the effect of decreased levels of urease on colonization has not been examined. The nixA gene, required for full urease activity, encodes a cytoplasmic membrane nickel transporter that imports nickel ions and leads to incorporation of nickel ions into apourease. A nixA mutant of the Sydney strain of H. pylori (SS1) was constructed by disruption of the nixA gene with a kanamycin resistance cassette. This mutant retained only half the urease activity of the wild-type (wild-type) SS1 strain. C57BL/6j (n = 75) and BALB/c (n = 75) mice were inoculated independently with the wild-type or the nixA strain. The level and distribution of colonization were assessed by bacterial colony counts and histological grading at 4, 12, and 24 weeks postinfection. Colonization levels of the nixA strain in BALB/c mice were significantly lower compared with SS1 (P = 0.005), while colonization in C57BL/6j mice was similar for both the wild-type and mutant strains. Subtle differences in colonization of the different regions of the stomach, determined by microscopic grading, were observed between wild-type SS1 and the nixA strain in BALB/c mice. On the contrary, when C57BL/6j (n = 35) and BALB/c (n = 35) mice were coinfected with the wild-type and nixA strains simultaneously, the nixA mutant failed to colonize and was outcompeted by the wild-type SS1 strain, which established normal levels of colonization. These results demonstrate the importance of the nixA gene for increasing the fitness of H. pylori for gastric colonization. Since nixA is required for full urease activity, the decreased fitness of the nixA mutant is likely due to reduced urease activity; however, pleiotropic effects of the mutation cannot be completely ruled out.
منابع مشابه
Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity.
Arginase of the Helicobacter pylori urea cycle hydrolyzes L-arginine to L-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urea...
متن کاملNickel represses the synthesis of the nickel permease NixA of Helicobacter pylori.
Nickel acquisition is necessary for urease activity, a major virulence factor of the human gastric pathogen Helicobacter pylori. NixA was identified as a specific nickel uptake system in this organism. Addition of small amounts of nickel to media strongly stimulates urea hydrolysis. On the other hand, high nickel concentrations are deleterious to cell growth. As a possible protective reaction, ...
متن کاملHelicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity.
Helicobacter pylori urease requires nickel ions in the enzyme active site for catalytic activity. Nickel ions must, therefore, be actively acquired by the bacterium. NixA (high-affinity nickel transport protein)-deficient mutants of H. pylori retain significant urease activity, suggesting the presence of alternate nickel transporters. Analysis of the nucleotide sequence of the H. pylori genome ...
متن کاملThe nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori.
The NikR protein is a nickel-dependent regulatory protein which is a member of the ribbon-helix-helix family of transcriptional regulators. The gastric pathogen Helicobacter pylori expresses a NikR ortholog, which was previously shown to mediate regulation of metal metabolism and urease expression, but the mechanism governing the diverse regulatory effects had not been described until now. In t...
متن کاملAn ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition.
The genomes of Helicobacter species colonizing the mammalian gastric mucosa (like Helicobacter pylori) contain a large number of genes annotated as iron acquisition genes but only few nickel acquisition genes, which contrasts with the central position of nickel in the urease-mediated acid resistance of these gastric pathogens. In this study we have investigated the predicted iron and nickel acq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2002